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Heat and Health 1

Hot weather and heat extremes: health risks
Kristie L Ebi, Anthony Capon, Peter Berry, Carolyn Broderick, Richard de Dear, George Havenith, Yasushi Honda, R Sari Kovats, Wei Ma, 
Arunima Malik, Nathan B Morris, Lars Nybo, Sonia I Seneviratne, Jennifer Vanos, Ollie Jay

Hot ambient conditions and associated heat stress can increase mortality and morbidity, as well as increase adverse 
pregnancy outcomes and negatively affect mental health. High heat stress can also reduce physical work capacity and 
motor-cognitive performances, with consequences for productivity, and increase the risk of occupational health 
problems. Almost half of the global population and more than 1 billion workers are exposed to high heat episodes and 
about a third of all exposed workers have negative health effects. However, excess deaths and many heat-related health 
risks are preventable, with appropriate heat action plans involving behavioural strategies and biophysical solutions. 
Extreme heat events are becoming permanent features of summer seasons worldwide, causing many excess deaths. 
Heat-related morbidity and mortality are projected to increase further as climate change progresses, with greater risk 
associated with higher degrees of global warming. Particularly in tropical regions, increased warming might mean 
that physiological limits related to heat tolerance (survival) will be reached regularly and more often in coming 
decades. Climate change is interacting with other trends, such as population growth and ageing, urbanisation, and 
socioeconomic development, that can either exacerbate or ameliorate heat-related hazards. Urban temperatures are 
further enhanced by anthropogenic heat from vehicular transport and heat waste from buildings. Although there is 
some evidence of adaptation to increasing temperatures in high-income countries, projections of a hotter future 
suggest that without investment in research and risk management actions, heat-related morbidity and mortality are 
likely to increase.

Introduction
Exposure to high ambient temperatures causes needless 
suffering and death. Tempatures above long-term averages 
during summer months and discrete heat extremes 
(eg, heatwaves) are associated with excess mortality.1 In 
high-income countries, heat is one of the largest weather-
related causes of death.2 In addition to mortality, hot 
weather and heat extremes are associated with increased 
emergency room visits and hospital admittance,3–5 
increased deaths from cardiorespiratory and other 
diseases,6 mental health issues,7 adverse pregnancy and 
birth outcomes,8 and increased health-care costs.9 Most 
heat-related morbidity and mortality should be preventable 
with improved preparedness and avoidance of exposure. 
Studies consistently show that adults older than 65 years, 
people with cardiopulmonary and other chronic diseases, 

and very young children are particularly vulnerable to 
the effects of heat, irrespective of income level or geo-
graphical region.10–14 There is greater knowledge about the 
burden of heat-related mortality in high-income countries, 
although excess mortality also occurs in low-income 
and middle-income countries (LMICs).15

Historical burdens of disease from the first two 
decades of the 21st century will be poor predictors of 
risks over coming decades. Climate change is increasing 
the frequency, intensity, and duration of heat extremes, 
putting more individuals, communities, and health 
systems at risk.16 European heat extremes in 2015, 2017, 
2018, and 2019 were made more likely and more intense 
because of anthropogenic climate change.17 A prolonged 
Siberian heat extreme, in 2020, was almost impossible 
without climate change.18 On average between May and 
July, 2018, about 22% of the populated and agricultural 
areas north of 30° latitude had concurrent temperatures 
above the 90th percentile because of climate change.19,20 
Projections show that the average high-exposure area 
expected to have warm and hot spells in the northern 
hemisphere could increase by about 16% per additional 
1°C of global warming.19

Morbidity, mortality, and reductions in worker pro-
ductivity are projected to increase with climate change, in 
the absence of strong adaptation and mitigation efforts, 
particularly in LMICs.21,22 Projections of heat-related 
morbidity and mortality are affected by assumptions 
about heat adaptation strategies (eg, technological and 
infrastructural); adaptation assumptions should be 
incorporated to provide robust projections of heat-related 
mortality.23 Higher degrees of temperature change might 
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Key messages

• People are unnecessarily suffering and dying in the heat, 
with population health and community vulnerability 
often unrecognised

• Other heat-related effects include reduced occupational 
health and productivity, and increased sports illnesses and 
injuries

• The physiological limits of heat tolerance are finite and 
numerous cofactors substantially reduce these limits

• Without urgent investments in research and risk 
management actions, climate change will continue to 
increase heat-related hazards, and associated morbidity 
and mortality
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decrease the extent to which morbidity and mortality 
are preventable because physiological limits could be 
reached even with adaptation measures. Heat action 
plans that incorporate early warning and response 
systems are essential for reducing vulnerability.24

Preventing further heat-related risks in a warmer and 
more extreme climate in the future requires upscaling 
inter ventions, as reviewed in the second paper in this 
Series.25 In this Series paper, we build a more holistic 
understanding of factors heightening or attenuating 
risks that need to be incorporated into heat action plans, 
also known as heat-health action plans, to enhance their 
effectiveness in a changing climate. We start by reviewing 
physiological responses and other factors affecting heat 
stress, illustrate possible future challenges to the general 
population from research on occupational and sports 
exposures, discuss the role of the built environment, and 
highlight megatrends that can alter risks.

Physiological factors affecting heat strain, 
illnesses, and death
The human body responds to heat stress in two primary 
ways: redistributing blood flow towards the skin 
(vasodilation) to improve heat transfer from muscles to 
skin and subsequently to the environment, and secreting 
sweat onto the skin, which subsequently evaporates 
and removes body heat.26 The brain regulates these 
physiological heat loss responses, with additional 
thermal input from temperature-sensitive nerve cells in 
the skin and throughout the body.27 This regulation can 
also be affected by non-thermal signals, such as from 
dehydration, metaboreceptors (a type of chemoreceptor 
that responds to metabolic products generated by 
exercising muscles), and cytokines.27 These physiological 
heat stress responses are necessary to limit elevations in 
core temperature, and can affect people differently based 
on, for example, pre-existing medical conditions, with 
the possibility for negative effects on the body.

The redistribution and increased blood flow to the 
skin, due to cutaneous vasodilation, increases cardiac 
demand while decreasing the heart’s filling pressure.28,29 
These responses require the heart to pump harder 
and faster, increasing the local (coronary tissue) oxygen 
demand (figure). For people with pre-existing heart 
conditions, this response can lead to a mismatch 
between a high cardiac oxygen demand and a 
compromised cardiac oxygen delivery.30 A sustained 
mismatch can lead to cardiac ischaemia, infarction, and 
ultimately, cardio vascular collapse.30 The elevated 
cardiovascular strain from heat stress is a primary health 
concern during heat extremes as more older adults die 
from cardiovascular events than nearly all other heat-
related causes of death combined.31 However, this 
observation might be illness-specific because some 
evidence32 sug gests that particular illnesses, such as 
congestive heart failure, might benefit from high 
temperatures, whereas other evidence contradicts these 

findings,33 and further evidence has shown impaired 
heat loss responses in patients with congestive heart 
failure.34,35 Regardless, meta-analyses have clearly shown 
that all-cause cardio vascular illness is the primary cause 
of death during heatwaves,6,31 and as almost half a billion 
people are estimated to have cardiovascular disease 
globally,36 any densely populated area affected by a heat 
extreme will be at risk for increased cardiovascular-
related mortality.

Additionally, sweat production can lead to dehydration 
if the resultant body water deficits are not adequately 
replenished. Dehydration decreases blood volume that 
can eventually exacerbate cardiovascular strain37 and 
also lead to acute kidney injury and failure (figure).38,39 
Chronic dehydration can lead to kidney fibrosis and 
chronic kidney disease, which is of concern for outdoor 
workers in Mesoamerica, India, and other regions.40 
This condition worsens cardiovascular disease40 and 
is more regularly reported during or following hot 
weather events.41

Under conditions of extreme heat stress, the 
thermoregulatory capacity of the body can be exceeded, 
resulting in illness due to overheating that can progress 
to heat stroke, which if untreated, can be fatal.26,42 
High internal temperatures (39–40°C), combined with 
ischaemia and increased oxidative stress after blood 
redistribution, can cause cell, tissue, or organ damage, 
with the brain, heart, kidneys, intestines, liver, and lungs 
at the greatest risk (figure). Heat-derived lung damage, 
in the form of pulmonary oedema and acute respiratory 
distress syndrome, combined with the high rates of 
people with pre-existing respiratory conditions,33 and 
increased pulmonary stress because of heat-related 
hyperventilation43 and elevated air pollution during 
heatwaves,44 is responsible for the second greatest 
source of mortality and morbidity during heatwaves, 
after cardiovascular disease.31 Due to the multifaceted 
source of damage, heat-derived injuries can remain 
hazardous even after cooling the body to normothermic 
temperatures.45 Similarly, although most heat-related 
hospital admissions occur within 24 h of the onset of 
these events, cognitive46 and organ dysfunction can 
persist for years following injury and render the injured 
individual at two to three-times greater risk of death for 
decades after injury.47

Other factors affecting heat strain
The use of alcohol, medications, and illegal narcotics 
is associated with increased mortality during heat 
extremes.46,48–50 Many commonly prescribed medications, 
such as general anticholinergics, antidepressants, and 
opioids,51 and illegal narcotics such as cocaine,48 might 
compromise physiological heat loss responses (panel). 
Although sweating reductions with some medications 
have been reported,48 most medications have not been 
systematically studied in a thermoregulatory context 
and no studies have used ecologically valid doses in 
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realistic conditions of heat extremes. Empirical evidence 
of the exact effect of these medications is urgently 
needed.50 A primary area of concern is a direct inhibition 
of acetylcholine, the neurotransmitter responsible for 
inducing sweating and, potentially, skin vasodilation.77 
Some medications51 and narcotics68 might also directly 
influence the thermoregulatory control centre in the 
brain.

A reduced behavioural capacity to respond and adapt to 
extreme heat also elevates the risk of heat-related illness 
or injury. In particular, increased mortality during heat 
extremes49 is associated with being confined to bed, living 
alone, being unable to care for oneself, not leaving 
the residence to cool down their body temperature, and 
having a pre-existing mental health condition. For 
individuals with pre-existing mental health conditions, 

the elevated mortality rates are probably due to 
combinations of an inability to take necessary personal 
precautions to cool down, impair ments in the 
thermoregulatory control system, and the effects of 
medications.78

Individuals with paraplegia and tetraplegia have an 
inability to adequately control body temperatures in hot 
environments while resting and during exercise,79 even 
with excellent fitness levels. However, the relative 
contributions of these factors are unclear and further 
studies are required to elucidate the relative effect.78

Heat can also indirectly contribute to an increased risk 
of communicable diseases. In many tropical countries, 
hot temperatures are the leading barrier to overnight 
mosquito-net use; therefore, heat stress is a major factor 
aggravating risk of diseases such as dengue and malaria.80,81 

Figure: Illustration of the physiological pathways of human heat strain
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Panel: Epidemiological observations with evidence-based explanations

Physiological factors associated with increased risk of death 
Cardiovascular disease49 
• Primary cause of death during heatwaves31

• As a pre-existing condition, predisposes individuals to 
coronary oxygen use versus delivery mismatches30

Respiratory diseases (particularly chronic obstructive pulmonary 
disease)31 
• As a pre-existing condition, predisposes individuals to death 

by respiratory disease33

• Secondary cause of death during heatwaves31

• Acute respiratory distress syndrome brought on by immune 
response to heat-related cell death,5 and by increased air 
pollution with heatwaves44

Cerebrovascular disease31 
• Tertiary cause of death during heatwaves31

• Heat-related reductions in cerebral blood flow and damage 
to blood–brain barrier can lead to increased intracranial 
pressure, cerebral ischaemia, and possibly intracranial 
haemorrhage52,53

Genitourinary disease (particularly chronic kidney disease)54 
• Potential cause of death31

• Daily dehydration (especially in the presence of other 
environmental factors) can lead to kidney fibrosis55 and 
potentially failure56

• Chronic kidney disease, in turn, predisposes individuals to 
cardiovascular events57

Diabetes58 
• Potential cause of death during heatwaves31

• Reductions in skin blood flow and sweating for individuals 
with type 1 and type 2 diabetes related to extent of disease-
associated complications (peripheral neuropathy), how well 
the disease is controlled, and how long the individual has 
lived with the disease59

Dehydration58 
• Depending on the health-care system, identified as a cause 

of death during heatwaves58

• Reduced sweat loss, skin blood flow, and increased core 
temperature of heat stress above approximately 2% total 
body-mass loss dehydration60

Heat-related illness58 
• Advanced stages of heat illness or stroke can lead to lethal 

damage to the brain, kidneys, and liver61

Mental health illness or disorder49 
• Potential physiological thermoregulatory inhibitions 

(uncertain)
• Potential behavioural thermoregulation impairments 

(uncertain)
• Probable interactions with anticholinergic medications 

(eg, antidepressants)51

Hypertension46 
• Increases cardiovascular strain, increasing coronary oxygen 

demand62

Younger than 1 year13 or 4 years (inconsistent)63 
• Infants have a lower heat loss capacity relative to adults64

• Relatively high surface area allows them to absorb heat 
more quickly when air temperature is higher than skin 
temperature64

• Inability to behaviourally thermoregulate (particularly to 
remove themselves from hot cars; probable but no 
definitive studies)

Older than 65 years65 
• Diminished sweating ability66

Selected prescription medications49 
• Possibly alter the thermoregulatory centre (anticholinergics, 

antidepressants, antiepileptics, antihypertensives, muscle 
relaxants, and opioids)51

• Possibly alter sweat gland and cutaneous vasculature 
stimulation peripherally (anticholinergics, antihistamines, 
antipsychotics, antivertigo medications, bladder 
antispasmodics, gastric antisecretories, and muscle relaxants)51

• Note, no studies have verified these effects using regularly 
prescribed doses in humans in heatwave conditions

Cocaine46 
• Increases metabolism (possible, but uncertain)67

• Impairs both sweating and vasodilatory heat loss responses68

• Reduces perceptual heat sensitivity (ie, users feel cooler at 
equivalent temperatures compared with non-users)68

Prescribed diuretics46 
• Increased water excretion might lead to dehydration and 

subsequent heat intolerance69

Alcohol abuse46 
• No impairment (and possible enhancement) of sweating, 

vasodilation, and cool-seeking behaviour70–72

• Increased diuresis leading to dehydration (effect probably 
small)73

• Impaired decision making74

Behavioural factors associated with increased risk of death 
Visited by nurses (within the home)49 
• Indication of immunocompromised state and therefore 

impaired thermoregulatory control27 or inability to deal with 
heat-related sepsis and coagulopathies;75 or presence of 
other health conditions that could limit mobility and 
behavioural thermoregulation (uncertain)

Unable to care for themselves, did not leave home, or confined to 
bed49 
• Reduced thermoregulatory adaptive capacity (uncertain)
• Warmer indoor temperatures with low air flow

(Continues on next page)
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Heat extremes in countries with limited clean drinking 
water increase the threat of water-borne diseases as the 
volume needed to replace sweat losses and prevent 
dehydration might exceed supply.

Heat extremes are associated with higher mortality 
rates in infants, particularly neonates.13 The development 
of the thermoregulatory system is age dependent.64 
Infants could be at a higher risk due to morphological 
factors, such as a body surface area-to-mass ratio that 
can be 64% greater than adults,64 allowing for more dry 
heat (convective) gain from the environment when air 
temperature exceeds skin temperature (approximately 
35°C). This gain can be offset by the relatively greater 
capacity for evaporative cooling when there is no impair-
ment to sweating, but dehydration (relative to mass) 
would subsequently occur at a faster rate.42 Irrespective of 
any morphological or physiological disadvantages, the 
primary cause of heat-related death in infants and 
toddlers is due to being forgotten or gaining unsupervised 
access to, or being left alone, in hot vehicles.82

Without accounting for the many crucial interindividual 
factors of human thermoregulation mentioned pre-
viously and in the panel, as well as adaptation, current 
heat risk projections might create unreliable and 
unrealistic estimates of future adverse health outcomes.83

Sport, exertional heat stress, and heat stroke
Although heat stress risk is often assumed lowest in 
elite athletes, cases of fatal exertional heat stroke have 
occurred in elite sports such as American football, rugby 
league, wrestling, and long distance running. Its 
incidence rate in sport is currently low, but fatal and life-
threatening cases of exertional heat stroke are ten-times 
more common than serious cardiac events in warm-
weather endurance events.84 It is typically observed in 
otherwise healthy people and workers, after very high 
amounts of heat production associated with intense 
physical exertion, often coupled with clothing or 
equipment that impairs heat loss in temperate to hot 
conditions.85–87

In 2019, examples of heat-related disruptions to 
major sporting events include the Women’s Fédération 
Internationale de Football Association (FIFA) World 
Cup in France, the Australian Open tennis tournament 
in Melbourne, VIC, Australia, the Olympic test triathlon 
event in Tokyo, Japan, the World Track and Field 
Championships in Doha, Qatar, and the New York City 
Triathlon, NY, USA; each had either interrupted or 
postponed competition due to the anticipated high risk 
of exertional heat illness in competitors. Projections 
suggest that by 2085, very few major cities will be able to 
host the summer Olympic games due to heat-related 
risks for athletes.88 Heat-related concerns could be even 
greater for the Paralympic games because they will 
involve more vulnerable populations.89–92

Most community and professional sports health 
and safety policies to reduce heat-related risks (eg, 
International Olympic Committee and FIFA) are based on 
the index thresholds of shaded air temperature or the wet-
bulb globe temperature (WBGT). Fixed air temperature 
thresholds for the suspension of play are inadvisable 
because the amount of heat strain induced by a particular 
temperature is affected by humidity, wind speed, sun 
exposure, clothing, and exercise intensity.93 Although the 
WBGT index accounts, to a certain extent, for these other 
parameters, relatively expensive equipment is required for 
its accurate and direct measure ment. An indoor WBGT 
formula that incorporates only temperature and natural 
wet bulb temperature is often estimated from ambient 
humidity values and, thus, will underestimate the risk of 
heat stress for people directly exposed to the sun and 
low wind speeds. Current estimated WBGT values issued 
by some weather forecast services (eg, Bureau of 
Meteorology in Australia) assume fixed cloud cover and 
wind, and similarly underestimate environmental risk of 
heat stress on clear and still days.94 Furthermore, critical 
wet bulb globe temperature thresholds for modifying or 
suspending play to protect health should be specific for 
each sport and competition level.95 Alternative heat stress 
indices should also be considered.96

(Panel continued from previous page)

• Isolated, unable to receive help from others (uncertain)
• Unable to behaviourally thermoregulate (uncertain)

Lived alone49 
• Unable to access help if needed (uncertain)

Lack of air conditioning6 
• Higher indoor environment temperatures, leading to 

greater heat strain26

Behavioural factors associated with decreased risk of death 
Visited air conditioned places49 
• Provide physiological respite from heat by visiting cool 

environments76

Working air conditioner in house49

• Able to choose to lower environmental temperatures to 
reduce physiological strain76

Access to transportation49 
• Able to visit others for help or travel to cooler areas76
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Community sport competitors might be at a greater risk 
of heat illness than elite and professional athletes due to a 
lower fitness and acclimatisation status;97 and although 
they are probably protected by lower exercise intensity 
levels, less economical movement elicits a higher heat 
production for a given activity.98 Summer sports and 
sports played in tropical and subtropical environments 
are projected to be the most affected by future warming. 
Physical activity decreases at average daily air 
temperatures exceeding 29–30°C, with older adults being 
most affected.99,100 Projections (in Perth, WA, Australia) 
indicate an eight to 50-fold increase in the number of 
days that will be unsafe for moderate physical activity 
by 2070.101 Sports requiring intense physical activity are at 
high risk, including those with prolonged environmental 
exposures (marathon, triathlon, and road cycling), high 
intensity sports, and those where specialised clothing or 
protective equipment impairs heat loss (eg, American 
football and cricket). Risks for youth athletes are poorly 
understood.

In summary, where and when amateur and sporting 
events can be held safely, and when individuals can 
engage in jogging, hiking, gardening, and other activities 
and hobbies safely, will shift in a warmer climate.

Heat exposure of outdoor workers
A warmer world is also projected to negatively affect 
outdoor employment, with solutions urgently needed for 
outdoor workers worldwide. The International Labour 
Organization estimates that more than 1 billion workers 
are exposed to high heat episodes, not all of which occur 
during summer months.102 Depending on assumptions 
of future socioeconomic development, these numbers 
are probably conservative.

For outdoor workers, high metabolic heat production 
associated with occupational tasks combined with high 
ambient and radiant heat, low air flow, and sometimes 
high humidity, add to human heat strain. Metabolic heat 
production can increase by more than 15-times from 
resting values of around 100 watts; occupational heat 
production of 200–500 watts is typical.103 Internal heat 
production for a given task is very intensity-dependent; 
thus, pacing (ie, lowering of the intensity) should be, 
and often becomes, an integral part of behavioural 
thermoregulation for safety. Accordingly, workers 
exposed to elevated environmental heat will typically 
reduce their work output, taking more unplanned breaks 
or working at a slower pace than normal104 to adjust the 
overall occupational heat stress. Workers following a 
fixed or externally dictated pace (eg, buckets per h) or 
piecemeal will face higher heat strain than those workers 
who are free to self-pace. For manual labourers (eg, 
agriculture and construction), productivity begins to 
decline at around 20°C and progressively decreases as 
temperatures rise.105 Rest breaks that lower metabolic 
heat production are an effective heat mitigation method 
that might not appeal to some employers due to concerns 

about labour output. However, without extra breaks, 
lower work efficiency104 and higher rates of accidents and 
sick leave106,107 contribute to a reduction in overall produc-
tivity in the heat. Other relevant factors include personal 
protective equipment (eg, clothing and garments) with 
high evaporative resistance, and the cumulative effect of 
daily exposures to elevated temperatures.41,85

Occupational field studies104,108,109 and controlled mech-
anistic laboratory studies110 have shown that hyperthermia 
provoked by heat stress directly impairs physical work 
capacity104,105,108,109 and tasks relying on complex cognitive 
functions or skilled motor performances.111,112 A meta-
analysis of more than 447 million workers from over 
40 occupations in 30 countries113 found that approxi-
mately a third of all workers exposed to occupational 
heat stress had negative effects, including an increased 
risk of hyperthermia and cardiovascular failure or 
collapse, and increased risk of acute kidney disease.

Many workers are repetitively exposed to daily 
occupational heat stress over extended periods, thereby 
making them more susceptible to both acute and chronic 
effects of heat strain.41 In occupational settings, and 
especially when workers are exposed to heat extremes 
during work and leisure time (including overnight), 
adequate rehydration appears to be challenging, as 
indicated by the high prevalence of low hydration status 
at the onset of work in occupations with high heat 
stress114 and accumulative negative effects on productivity 
following consecutive heat extremes.115

Built environment
The term built environment refers to the physical 
components of where we live and work, including 
buildings, streets, open urban spaces, and infrastructure. 
Urbanisation transforms the surface microclimate 
by modifying the radiative, thermal, moisture, and 
aerodynamic processes, and thereby affecting the urban 
surface where people live and work.116 One consequence 
of urban development is the urban heat island that 
results in cities being, on average, warmer than adjacent 
rural landscapes. The urban heat island is amplified at 
night when stored daytime heat is emitted and intensified 
with increasing city size and population density.116 The 
true intensity of the urban heat island should adequately 
account for rural characteristics in addition to urban 
predictors, such as population.117 In practice, intra-urban 
heat intensities are more predictive of true human 
exposures;117,118 hence, the aim should be to reduce the 
various negative effects of high concentrations of urban 
heat, rather than only focusing on mitigating the urban 
heat island intensity.119

Urban temperatures are enhanced by anthropogenic 
heat from vehicular transport, heat emitted from building 
energy waste, and minimally by human metabolic heat. 
Estimates of the anthropogenic heat fluxes are usually 
based on intensity of energy use within a city, specifically 
the average energy uses per capita multiplied by urban 



Series

704 www.thelancet.com   Vol 398   August 21, 2021

population density. Increasing usage of air conditioning 
intensifies emissions of anthropogenic heat into the 
urban climate in a positive feedback spiral. In the summer 
of 2011, peak summer energy use in Beijing, China, was 
approximately 19 100  megawatts with more than 40% of 
that attributed to air conditioning load.120 When such city-
scale additional heat loads are included in global climate 
projections, rising household incomes result in a 
particularly rapid increase in demand for air conditioning121 
in middle-income economies of the tropics.

The rapid growth and densification of cities 
simultaneously increases the concentrations of ambient 
air pollution produced by vehicles and transportation 
systems, buildings, and industry. Within urban canyons, 
the airflow and vertical exchanges of street pollutants can 
lead to long residence times of particulate and gaseous 
pollutants,122,123 thus increasing human exposure to 
pollution and causing potentially worse adverse health 
outcomes.124

Megatrends affecting heat-related morbidity 
and mortality
The magnitude and pattern of future heat-related 
morbidity and mortality will depend on climate change 
and other important factors such as population 
growth and ageing,125 urbanisation trends,126 adaptation 
efforts,127 and development choices.128

Increases in the mean and extremes of global and 
regional temperatures have been observed since 1950, 
with confidence in the extent of change varying by 
region.129 Projections indicate substantial warming in 
temperature extremes by the end of the century over 
most land areas; hot days, hot nights, and the duration 
and intensity of heat extremes are projected to increase 
in most world regions.130 For example, in some regions, 
a 1-in-20-year annual hottest day could become a 
1-in-2-year event by the end of this century.

There is a large range of possible regional climates for 
a given increase in global mean surface temperature 
above preindustrial levels. For example, the mean 
temperature anomaly in the Arctic at peak warming 
could range from 5·04°C (for a 66th percentile outcome) 

to 6·29°C (for a worst case, 90th percentile). For the 
contiguous USA, the range is projected to be 2·57°C 
(for a 66th percentile) to 3·09°C (for a 90th percentile). 
These ranges imply a greater increase in the intensity of 
heat extremes than projections suggest. Most global 
climate models underestimate the extremes, indicating 
that future heat-related mortality risks could be even 
larger than projected in earlier studies.131

Without considering demographic change, achieving the 
Paris Agreement goal of limiting additional warming to 
below 2·0°C above preindustrial levels is projected to avoid 
substantial heat-related mortality.132–134 For example, in 
15 cities in the USA, increasing mitigation ambition to 
achieve the 2·0°C goal could avoid 70–1980 annual heat-
related deaths per city during heat extremes, and achieving 
the 1·5°C goal could avoid 110–2720 annual heat-related 
deaths.132 Such wide ranges in heat mortality are often due 
to high uncertainties across predictors of heat-related 
mortality (eg, human behaviour and adaptation);127 whereas 
slower future population growth and more adaptation 
result in lower estimates of negative health outcomes.

Byers and colleagues135 projected the global number of 
people exposed and vulnerable (living on <US$10 per day) 
to heat extremes under assumptions of a socioeconomic 
development pathway characterised by moderate chal-
lenges to adaptation and mitigation, by degrees of future 
temperature change (table). Overall, the numbers of 
people exposed, and those both exposed and vulnerable, 
substantially increase with each additional unit of 
warming. The risks also vary substantially by location; 
missing information from Africa and parts of Asia means 
the risks there are probably underestimates.

Climate change is also affecting other hazards that can 
exacerbate adverse heat-related outcomes, including 
ground-level ozone concentrations136 and wildfires (eg, 
increasing human exposures to particulate matter).137

Other trends of importance include the rapid increase in 
global urban population from 751 million in 1950, to 
4·2 billion in 2018. By 2030, the population living in urban 
areas is expected to reach 60% of the world total and the 
number of megacities exceeding 10 million inhabitants is 
expected to reach 43 megacities, up from 31 megacities 
in 2016.138 Global population by the end of the century 
could be 6·9–12·6 billion, depending on assumptions 
about fertility, mortality, migration, and education across 
diff erent development pathways; in 2050, the range is 
projected to be 8·5–10·0 billion.125 A larger and older 
population would mean more people at greater risk of 
heat-related effects.

Discussion
People are unnecessarily suffering and dying during hot 
weather and heat extremes. Heat-related morbidity and 
mortality are expected to increase as climate change 
continues, with each additional unit of warming 
projected to further increase the risks. Robust evidence 
of the relationships between hot weather and morbidity 

Exposed Exposed and vulnerable

1·5°C 3960 (3546–4508) 1187 (410–2372)

2·0°C 5986 (5417–6710) 1581 (506–3218)

3·0°C 7909 (7286–8640) 1707 (537–3575)

Data are millions of people (range), based on an estimated total world population 
of 9·2 billion in 2050. *Vulnerable people are those living on less than US$10 per 
day. †Heat event exposure was calculated as the sum of days from heat events 
lasting 3 or more consecutive days above the historical 99th percentile daily mean 
wet bulb air temperature.135

Table: Number of people globally projected to be exposed and 
vulnerable* to heat extremes of a socioeconomic development pathway 
with moderate challenges to adaptation and mitigation, by degrees of 
future temperature change†



Series

www.thelancet.com   Vol 398   August 21, 2021 705

and mortality is being augmented with growing 
evidence of other effects, including on occupational 
workers and professional and recreational athletes. 
Particularly in tropical regions, increased warming 
means that physiological limits could be reached 
regularly and more often in coming decades.

Without investment in research and implementation of 
needed risk management actions, a very different future 
awaits many people and communities. Higher means 
and extremes of temperature will lead to future summers 
characterised by higher morbidity and mortality, and 
important limitations and changes to what are today 
considered normal activities. In the second paper of this 
Series, Jay and colleagues25 focus on heat action plans and 
other options that health authorities and partners can 
implement to increase resilience to higher ambient 
temperatures and more heat extremes. These actions are 
developed in the context of other trends, such as 
urbanisation and socioeconomic development, that could 
ameliorate or exacerbate heat-related hazards.
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